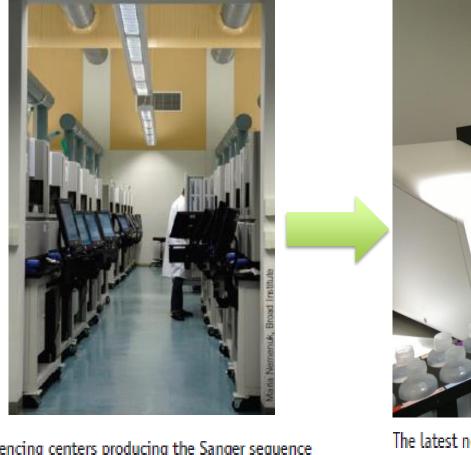

Novità in Endocrinologia Pediatrica dalla Clinica alla Genetica

La genetica dell'ipotiroidismo congenito

Giorgio Radetti

14 maggio 2016, Cagliari



Da insensibilità tessutale agli ormoni tiroidei

Next-generation sequencing transforms today's biology

Stephan C Schuster

| VOL.5 NO.1 | JANUARY 2008 | NATURE METHODS

Sequencing centers producing the Sanger sequence data for mammalian genome projects are factorylike outfits with a large number of personnel.

The latest next-generation sequencing instruments can generate as much data in 24 h as several hundred Sanger-type DNA capillary sequencers, but are operated by a single person.

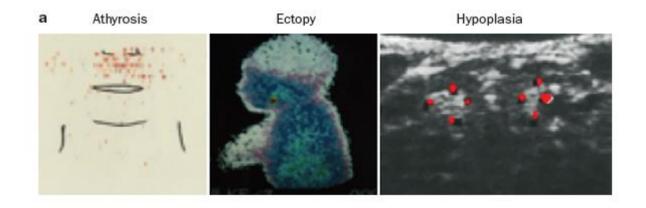
Associated defect	Function	Gene
Variable TSH resistant	Thyroid stimulation	TSHR
Pendred syndrome (SHL + PIO	Ion apical transport	SLC26A4
Variable PIOD and degree of hypothyroidis	H ₂ O ₂ production	DUOX2
PIC	H ₂ O ₂ production	DUOXA2
TIOD with severe hypothyroidism + low s	TH synthesis	TG
TIOD with severe hypothyroidis	lodide organification	ТРО
Variable dysgenesis + neonatal DM + polycystic kidne	Transcription factor	GLIS3
Brain-Lung-Thyroid syndrom	Transcription factor	NKX2.1
Variable dysgenes	Transcription factor	PAX8
Bamforth-Lazarus syndrome (athyreosis + cleft palate + spiky ha	Transcription factor	FOXE1
Alagille syndrome (Thyroid hypoplasia in zebrafis	Notch stimulation	JAG1

- In contrast with current understanding, novel/rare variations in the known candidate genes can contribute to the CH pathogenesis of a large number of affected patients.
- The systematic NGS approach reveals a frequent (>20% of cases) multigenic origin of CH, including unexpected variations in genes that would have been excluded a priori from screening on the basis of the clinical phenotype.

Etiology of CH

CH as a complex genetic disease with variable penetrance and expressivity......

..... frequent multifactorial (genetic, epigenetic, environment) or multigenic origin


•Amendola E et al 2005 A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 146:5038–5047

•Vassart G, Dumont JE 2005 Thyroid dysgenesis: multigenic or epigenetic or both. Endocrinology 146:5035–5037

•Leger J et al 2002 Thyroid developmental anomalies in first degree relatives of children with congenital hypothyroidism. J Clin Endocrinol Metab 87, 575

•Amendola E et al 2010 A locus on mouse chromosome 2 is involved in susceptibility to Congenital Hypothyroidism and contains an essential gene expressed in thyroid. Endocrinology 151:1948-1958

Ipotiroidismo primitivo: disgenesi

A causa della bassa frequenza di mutazioni nei pazienti con disgenesi tiroidea, L'analisi genetica dovrebbe essere fatta solamente se coesistono altri segni clinici (FOXE1, NKX2-1, NKX2-5) o ricorrenza familiare (PAX8 e TSHR)

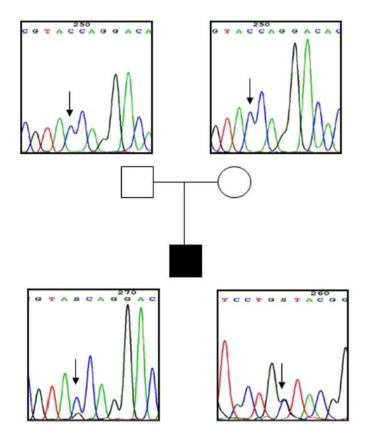
- FOXE1: labiopalatoschisi, capelli dritti (spiky), ritardo mentale
- NKX2-1: modico ipotiroidismo, sintomi polmonari, coreoatetosi, atassia, ipotonia muscolare
- NKX2-5: difetto cardiaco nel 50%
- **PAX8**: ipoplasia tiroidea, lieve ipotiroidismo e agenesia renale unilaterale
- **TSHR**: espresso tardivamente, induce solo ipoplasia tiroidea oltre all'ipotiroidismo

JAG1 Loss-Of-Function Variations as a Novel Predisposing Event in the Pathogenesis of Congenital Thyroid Defects

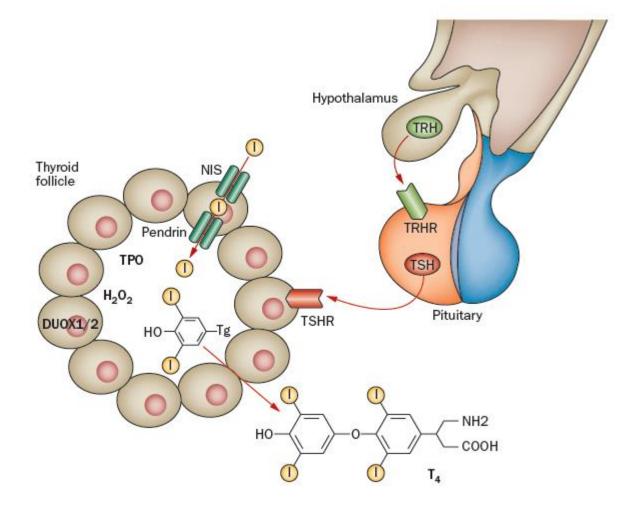
Tiziana de Filippis,* Federica Marelli,* Gabriella Nebbia, Patrizia Porazzi, Sabrina Corbetta, Laura Fugazzola, Roberto Gastaldi, Maria Cristina Vigone, Roberta Biffanti, Daniela Frizziero, Luana Mandarà, Paolo Prontera, Mariacarolina Salerno, Mohamad Maghnie, Natascia Tiso, Giorgio Radetti, Giovanna Weber, and Luca Persani[†] Patients with FOXE 1 mutations, showing spiky hair, micrognathia, and hypertelorism (A), and cleft palate (B). From: Castanet M, et al. A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis, and cleft palate. Hum Mol Genet 2002;11:20521-9 Bamforth-Lazarus Syndrome

Park, S M et al. J Med Genet 2005;42:379-389

CASE REPORT



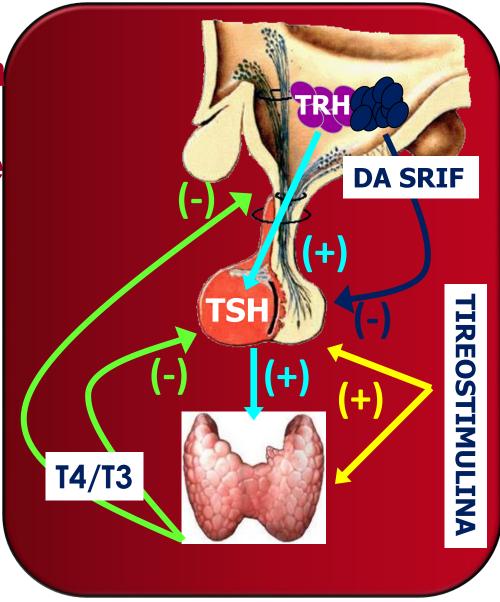
Open Access


NKX2.1-Related Disorders: a novel mutation with mild clinical presentation

Sara Monti¹, Annalisa Nicoletti¹, Antonella Cantasano¹, Heiko Krude² and Alessandra Cassio^{1,3*}

	4° d	10° d	8° m	13° m
TSH spot (mU/L)	10	4.4		
TSH serum (mU/L)			8.8	13.8
fT4 serum (pg/ml)			14.8	13.4
Choreoathetosis			+ -	+ +
Thyroid US		Norm		

Ipotiroidismo primitivo:disormogenesi



- NIS: trasporta attivamente lo iodio attraverso la membrana basale
- **Pendrina** (gene SLC26A4) facilita il passaggio dello iodio nel lume follicolare
- **Gene TG**: produzione di TG
- TPO: ossida lo iodio e lo lega ai gruppi tirosinici della tiroglobulina (MIT, DIT) e favorisce la loro associazione(T3, T4)
- **DUOX1 e 2**: provvedono alla produzione di H2O2 necessaria alla funzione della TPO
- DUOXA1 e 2: dimerizzano con il rispettivo DUOX e favoriscono l'uscita dal RE verso la membrana cellulare
- **DEHAL1**: ricicla lo iodio deiodinando le mono e diiodotironine
- GNAS gene: l'alterazione della G protein (altera la trasmissione di segnale del TRH e del TSH

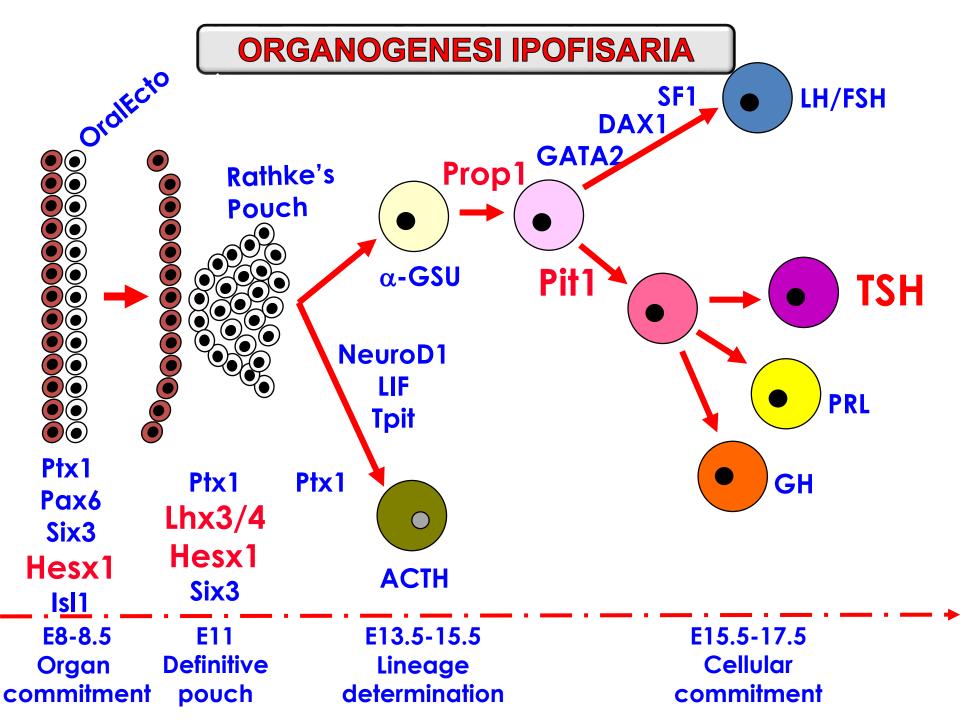
IPOTIROIDISMO CENTRALE

E' la forma di ipotiroidismo causata da un'insufficiente stimolazione da parte del TSH di una ghiandola tiroidea normale

PREVALENZA 1:16.000-100.000

IPOTIROIDISMO CENTRALE

- La causa è una alterazione anatomica o funzionale della zona ipotalamo-ipofisaria
- La diagnosi è posta in presenza di bassi valori di fT4 e di valori di TSH inappropriatamente normali o modicamente elevati.
- Fallimento della "reflex TSH strategy"
- Il deficit di TSH raramente è isolato, più facilmente fa parte di un quadro di deficit combinato


TABLE 1. Known causes of CH in a tentative order of frequency

Invasive or compressive lesions Pituitary macroadenomas Craniopharyngiomas Meningiomas or gliomas Rathke cleft cysts Metastases Empty sella Carotid aneurysm latrogenic factors Cranial surgery or irradiation Drugs (e.g. RXR selective ligands) Injuries Head traumas Traumatic delivery Vascular accidents Pituitary apoplexy Postpartum pituitary necrosis (Sheehan syndrome) Subarachnoid hemorrhage Autoimmune disease Lymphocytic hypophysitis Polyglandular autoimmune diseases Infiltrative lesions Iron overload (hemochromatosis, thalassemia major) Sarcoidosis Histiocytosis X Inherited diseases CPHD: pituitary transcription factor defects; LEPR mutations Isolated CH: TSHB or TRHR mutations Infective diseases Tuberculosis Mycoses Syphilis

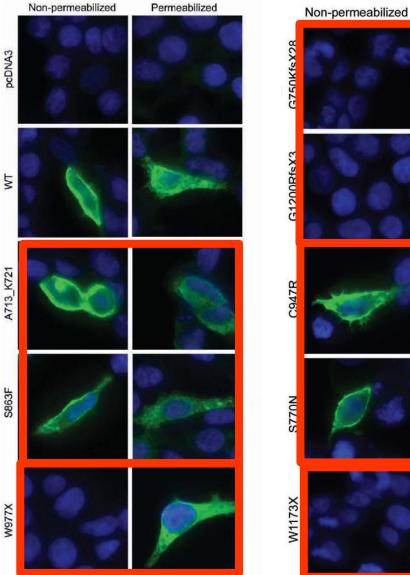
TABLE 2. Genetic forms of CH

Gene (MIM no.)	Clues for diagnosis (MIM phenotype no.)	Inheritance
<i>TSHβ</i> (188540)	Severe isolated CH of neonatal onset with high α-GSU, pituitary hyperplasia (275100)	Recessive
<i>TRH-R</i> (188545)	Isolated CH with blunted TSH/PRL response to TRH and apparently uneventful infantile development, and with delayed diagnosis from childhood (growth retardation) to adulthood	Recessive
POU1F1 (173110)	Moderate/severe CH of neonatal to infantile onset combined with GH and PRL defects, prominent forehead, mid face hypoplasia, depressed nose (613038)	Dominant or recessive
<i>PROP1</i> (601538)	Moderate/severe CH of neonatal to infantile onset, combined with GH, PRL, LH/FSH defects, and delayed ACTH deficiency, pituitary hypo-/hyperplasia (262600)	Recessive
HESX1 (601802)	Severe panhypopituitarism associated with septooptical dysplasia, supernumerary/hypoplastic digits (182230)	Dominant or recessive
<i>LHX3</i> (600577)	Hypopituitarism with conserved ACTH function and associated with pituitary hypo- or hyperplasia, short/rigid cervical spine, vertebral abnormalities, and variable deafness or mental retardation (221750)	Recessive
LHX4 (602146)	Combined anterior pituitary defects associated with abnormalities of cerebellum and small sella turcica (262700)	Dominant
LEPR (601007)	Severe obesity and hyperphagia combined with delayed puberty and mild thyrotropin defect	Recessive

The reference numbers on the NCBI web site (http://www.ncbi.nlm.nih.gov/omim) are reported for each gene and phenotype (4).

The IGSF1 Deficiency Syndrome: Characteristics of Male and Female Patients

S. D. Joustra, N. Schoenmakers, L. Persani, I. Campi, M. Bonomi, G. Radetti,
P. Beck-Peccoz, H. Zhu, T. M. E. Davis, Y. Sun, E. P. Corssmit,
N. M. Appelman-Dijkstra, C. A. Heinen, A. M. Pereira, A. J. Varewijck,
J. A. M. J. L. Janssen, E. Endert, R. C. Hennekam, M. P. Lombardi,
M. M. A. M. Mannens, B. Bak, D. J. Bernard, M. H. Breuning, K. Chatterjee,
M. T. Dattani, W. Oostdijk, N. R. Biermasz, J. M. Wit,*


- Ipotiroidismo centrale
- Macroorchidismo post puberale
- Possibile deficit di PRL
- Inizio puberale normale, ma ritardato aumento del testosterone
- Sovrappeso
- Deficit GH parziale e transitorio

 Mutazioni del gene codificante IGFS1 causano una alterata espressione di IGFS1 a livello della membrana cellulare

 Ciò causa verosimilmente una alterata espressione dei recettori del TRH a livello pituitarico con conseguente alterata trasmissione del segnale

Alterato trafficking delle proteine mutate

Permeabilized

Alcune forme mutate non sono presenti in membrana, ma la proteina appare comunque espressa.

Altre forme sono espresse in membrana. Ulteriori studi (mediante cell surface biotinylation) indicano che tali forme raggiungono la membrana con minor efficienza rispetto al wt e con un pattern di glicosilazione più immaturo.

Cellule HEK293 trasfettate con 100 ng di DNA; espressione analizzata in IF con anticorpo anti-IGSF1, controcolorazione con DAPI

ie	Features	Values, %
	Hemizygous males	. –
Jc	Central hypothyroidism	100
	Low-normal T concentrations in adulthood	88
. 1	Adult macroorchidism	88
sa Sa	Delayed pubertal T rise, early/normal timing of testicular growth	75 ^a
	Mild problems with attentional control	75 ^a
	Small thyroid gland	74
	Increased waist circumference in adults	59
	Prolactin deficiency	61
	Late biochemical adrenarche	50 ^a
	Increased waist circumference in children	57
	Decreased DHEA in adulthood	40
	Benign external hydrocephalus	33ª
	Increased birth weight	26
	Hypocortisolism in infancy	21
	Increased IGF-1 concentrations in adulthood	20
	Increased head circumference	20
	GHD in childhood	16
	Heterozygous females	
	Delayed age at menarche	31
	Prolactin deficiency (non-symptomatic)	22
	Central hypothyroidism	18

Table 3. Clinical Features of the X-Linked IGSF1

ive Case lanagement

E. P. B. Ballieux, rg, M. Losekoot, dijk,* on behalf of

JCEM 2016

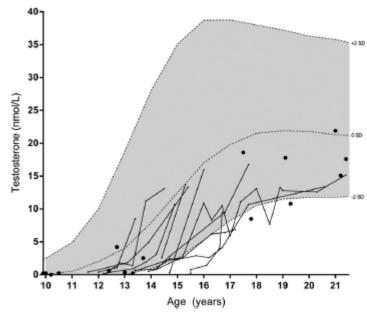
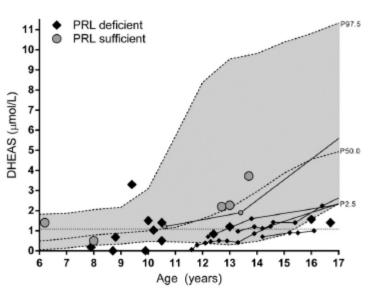
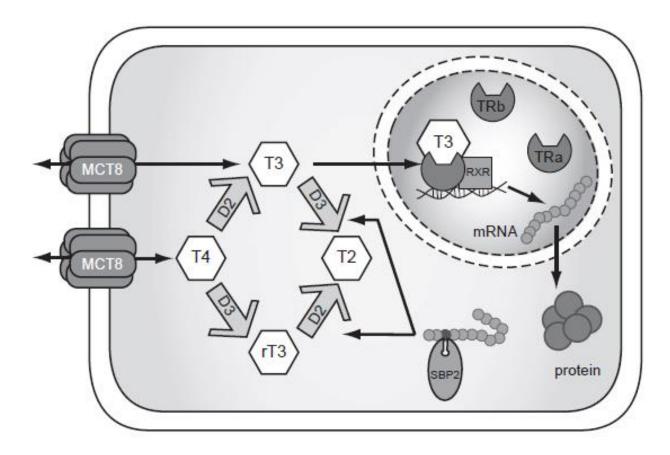
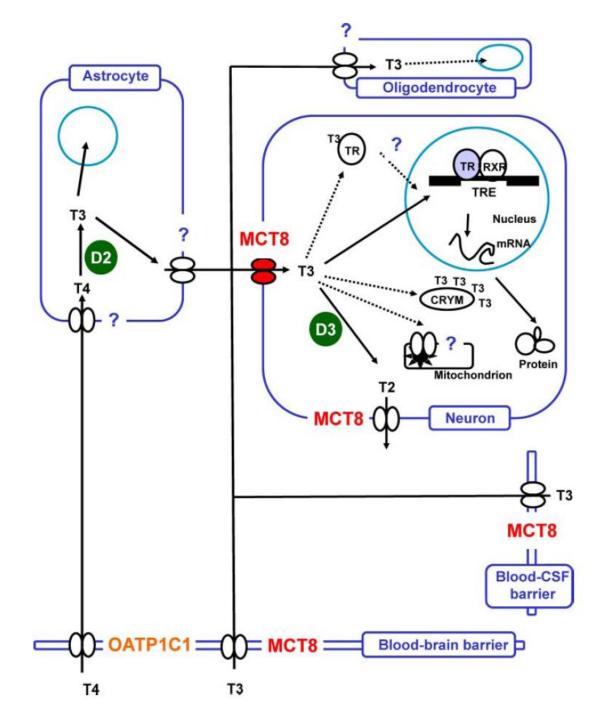



Figure 1. T concentrations in male patients. Lines represent longitudinal data and dots individual patients. Reference intervals were derived from Andersson et al (41).


(Suppression

+ · · >

Figure 2. DHEAS concentrations in male patients around the age of biochemical adrenarche (1.084 μ mol/L, dotted line). Lines represent longitudinal data, and the larger diamonds/dots are data from individual patients. Smoothed reference intervals were derived from Elmlinger et al (42). PRL, prolactin.


Sensibilità tessutale agli ormoni tiroidei

596 W. Edward Visser et al.

Alterato trasporto; deficit di MCT8

- **Clinica**: sindrome Allan-Herndon-Dudley: QI<40, ipotonia, convulsioni, difficoltà ad inghiottire, tetraparesi spastica
- Clinica: sindrome di Pelizeus-Mezbacher-like
- Diagnostica: fT4 lievemente basso, TSH marginalmente elevato, fT3 molto elevato
- **Sintomi** da eccesso di T3 (muscolo e fegato) e da deprivazione (cervello)

Transporter ^a	Iodothyronine derivates	Specificity ^b	Reference
MCT8	T ₃ , T ₄ , rT ₃ , T ₂	+++	17, 18
MCT10	T ₃ , T ₄	++	57
Oatp1a1	T ₃ , T ₄ , rT ₃ , T ₂ , T ₄ S, T ₃ S, rT ₃ S, T ₂ S	+	8
OATP1A2	T ₄ , T ₃ , rT ₃	+	102
Oatp1a3	T ₄ , T ₃	+	103
Oatp1a4	T_{4}^{+}, T_{3}^{-}	+	7
Oatp1a5	T_{4}^{+}, T_{3}^{-}	+	7
OATP1B1	T_4^{T} , T_3^{T} , T_3 S, T_4 S, rT_3 S	+	67, 104
Oatp1b2	T ₃ , T ₄	+	105
OATP1B3	$rT_{3}^{i}, T_{4}S, T_{3}S, rT_{3}S$	+	13
OATP1C1	T ₄ , rT ₃ , T ₃ , T ₄ S	++	59
OATP2B1	T_4	+	61
OATP3A1_v1/v2	T ₄	++	88
Oatp4a1	T_{3}, T_{4}, rT_{3}	+	102
OATP4C1	T ₃ , T ₄	+	86
Oatp6b1	T ₃ , T ₄	+	106
Oatp6c1	T ₃ , T ₄	+	106
LAT ['] 1	$T_{3}^{J}, T_{4}^{T}, rT_{3}, T_{2}$	+	77
LAT2	$T_{3}^{1}, T_{4}^{1}, rT_{3}^{2}, T_{2}^{2}$	+	77
NTCP	$T_{4}^{3}, T_{3}^{4}, T_{4}^{3}, T_{5}^{3}$ S	++	8, 9
MDR1	T_3	+	10

 TABLE 1. Thyroid hormone transporters

A parte MCT8, per gli altri trasportatori non vi è evidenza di un ruolo patogenetico

MCT8 deficiency: terapia

- Tiroxina (aumenta ulteriormente i livelli di T3!)
- Propiltiouracile+tiroxina (?)
- Tiromimetici (DITPA, TRIAC, TETRAC)sono in fase di studio
 - Sembrano ridurre ulteriormente il T3 cerebrale!!!!!

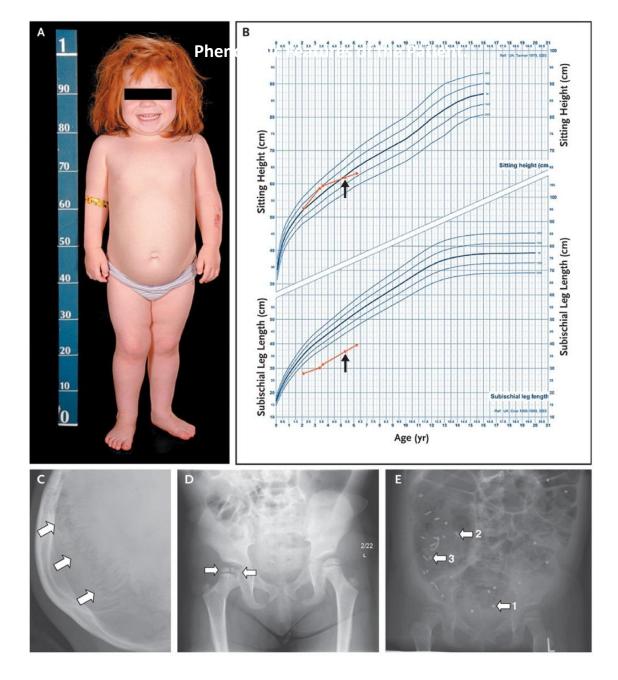
Seleno cysteine insertion sequence binding protein 2 (SBP2)

- Interviene nella inserzione della selenocisteina nelle deiodinasi
- Clinica: ritardo di crescita, ritardo motorio e cognitivo, debolezza muscolare, ipoglicemia, sordità, infertilità
- **Diagnostica**: elevato T4 e rT3 e basso T3, TSH marginalmente elevato e bassi valori ematici di selenio

Resistenza agli ormoni tiroidei

- Prima descrizione nel 1967
- I pazienti presentano elevati valori di ormoni tiroidei e TSH inappropriatamente normale
- Sintomi: assenza, ipotiroidismo, ipertiroidismo
- La differente sensibilità a livello dei tessuti target spiega la clinica (forma generalizzata, pituitarica)
- Sono state rinvenute alterazioni a carico dei recettori per la T3 (TRβ1 and TRα1) codificati dai geni THRB e THRA rispettivamente.
- Si era pensato che la sindrome da resistenza fosse dovuta a mutazioni inattivanti il gene THRB (RTH-β), ma ultimamente si è visto che anche mutazioni nel gene THRA (RTH-α) causano un particolare quadro clinico.

Mutazioni gene THRB (TRβ1, TRβ2; <u>**RTH-β**</u>)


- Mutazioni in eterozigotismo esercitano una azione dominante negativa sul recettore wild type
- Delezioni si comportano secondo una trasmissione di tipo recessivo in quanto non vi è influenza negativa sul recettore wild type
- Mutazioni omozigoti sono rare e causano un fenotipo severo

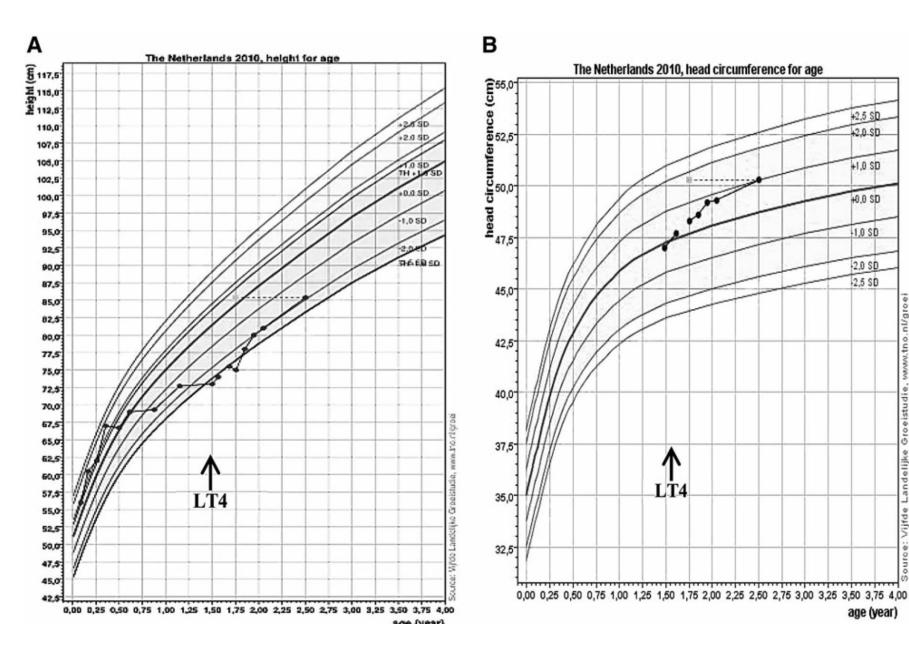
Mutazioni gene *THRA* (TRa1; <u>**RTH-α**</u>)

- Il recettore mutato non trasmette il segnale ed inoltre reprime l'attività spontanea basale
- Inibisce con una azione dominante negativa il recettore wild-type TRα
- Probabilmente influenza anche l'attività deiodinasica: D1 (T4 vs T3) o D3 (T3 vs rT3)

 Clinica: ritardo di crescita (segmento inferiore), ritardo nell'apprendimento, stipsi, ipotono muscolare, incoordinazione motoria, ritardo nell'apprendimento

• Laboratorio: basso T4, elevato T3, basso rT3 e normale TSH, basso GH e IGF-1

Bochukova E et al. N Engl J Med 2012;366:243-249.


THYROID Volume 26, Number 3, 2016 © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2015.0463

ORIGINAL STUDIES

THYROID FUNCTION AND DYSFUNCTION

Resistance to Thyroid Hormone Alpha in an 18-Month-Old Girl: Clinical, Therapeutic, and Molecular Characteristics

Anja L.M. van Gucht^{1,2} Marcel E. Meima^{1,2} Nitash Zwaveling-Soonawala³, W. Edward Visser^{1,2} Eric Fliers⁴, Johanna M.B. Wennink⁵, Civile Henny⁶, Theo J. Visser^{1,2} Robin P. Peeters^{1,2,*} and A.S. Paul van Trotsenburg^{3,*}

+2,5 SD

42,0 SD

+1,0 SD

+0,0 SD

1,0 SD

2,0 SD

2,5 SD

Mutated gene name	Transport MCT8		Nuclear receptors		
		Metabolism SBP2	THRB	THRA	
Clinical manifestations					
Neurological	Severe mental retardation and delayed motor and neurological development	(mild) delayed mental and motor development	ADHD, mental retardation in only minority of patients	Delayed motor and mental development	
Growth	Decline in body weight during childhood	Delayed bone age and growth retardation	Delayed bone age and short stature in less than half of patients	Delayed bone age and growth retardation	
Other	Feeding problems, X-linked	Immune deficiency, hypoglycaemia	Goitre, tachycardia	Constipation, low IGF1 levels	
Laboratory findings					
TSH	Normal	Normal; slightly elevated	Normal or elevated	Normal	
FT4	Low; low-normal	High	High	Low-normal	
T3	High	Low; low-normal	Normal or elevated	High-normal	
rT3	Low	High	High	Low	

Table 1. Comparison of the clinical phenotype and serum thyroid hormone levels in patients with reduced sensitivity to thyroid hormone

© 2013 John Wiley & Sons Ltd Clinical Endocrinology (2013), 79, 595–605

Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism

Samuel Refetoff,^{1–3} J.H. Duncan Bassett,⁴ Paolo Beck-Peccoz,^{5,6} Juan Bernal,^{7,8} Gregory Brent,⁹ Krishna Chatterjee,¹⁰ Leslie J. De Groot,¹¹ Alexandra M. Dumitrescu,¹ J. Larry Jameson,¹² Peter A. Kopp,¹³ Yoshiharu Murata,¹⁴ Luca Persani,^{5,15} Jacques Samarut,¹⁶ Roy E. Weiss,^{1,2} Graham R. Williams,⁴ and Paul M. Yen¹⁷

	Level of the defect		Gene involved and	Phenotype		
	Commonly used name ^a	Synonyms	inheritance (OMIM)	Consistent (pathognomonic)	Common	
	Thyroid hormone cell membrane	e transport defects (THC	MTD)			
	Monocarboxylate transporter 8 (MCT8) defect (8,9)	Allan-Herndon-Dudley syndrome	MCT8 (SLC16A2) gene (300095); X-chromosome linked	High T_3 , low rT_3 and T_4 , normal or slightly elevated TSH; low BMI; hypo- tonia, spastic quadriplegia; not walking or rarely ataxic gait; no speech or dys- arthria, mental retardation	Hypermetabolism, paroxysmal dyski- nesia, reduced muscle mass, seizures, poor head control, difficulty sitting independently	
	Idiopathic and other THCMTDs		To be determined	Unknown		
	Thyroid hormone metabolism de	fects (THMD)				
	Selenocysteine insertion sequence binding protein 2 (SBP2) defect (10)		SBP2 (SECISBP2) gene (607693); recessive	High T_4 and rT_3 , low T_3 , normal or slightly elevated TSH; growth retardation	Azoospermia, immunodeficiency, photo- sensitivity, delayed bone maturation, myopathy, hearing impairment, delayed developmental milestones	
	Idiopathic and other THMDs		To be determined	Unknown	developmental infestories	
408	Thyroid hormone action defects	(THAD): nuclear recepto	r and other			
	Resistance to thyroid hormone (RTH) ^b (1–3)	Thyroid hormone unresponsiveness, generalized RTH, RTH beta; Refetoff syndrome	THRB gene (190160); dominant negative (rarely recessive)	High serum FT_4 and nonsuppressed TSH	High serum FT_3 and rT_3 , high thyro- globulin, goiter, attention deficit hyper- activity disorder (ADHD), tachycardia	
	Non TR-RTH ^c (13)		Unknown	Same as above	Same as above	
_	RTH alpha ^d (11,12)	Congenital nongoitrous hypothyroidism 6	THRA gene (190120); dominant negative	Low serum T_4/T_3 ratio; cognitive impairment, short lower limbs, delayed closure of skull sutures, delayed bone and dental development, skeletal dys- plasia, macrocephaly; constipation; anemia	Low rT_3 , seizures, placid behavior	
	Hypersensitivity to thyroid hormone (HTH)		Unknown	Low FT ₄ and FT ₃ with normal TSH and no serum transport defects	Normal thyroid gland	
	Idiopathic and other THADs		To be determined	Unknown		

^aReferences are for first reported cases. ^bProposed future terminology: RTH β .

^cRTH without mutations in the *THRB* gene.

^dA single case with a mutation involving both TRa1 and TRa2 presented a more complex phenotype, including severe bone malformations, hypercalcemia with hyperparathyroidism, and diarrhea rather than constipation. It is unclear whether all observed abnormalities are due to the THRA gene mutation alone.

T₃, triiodothyronine; rT₃, reverse T₃; T₄, thyroxine; TSH, thyrotropin; FT₃, free T₃; FT₄, free T₄; BMI, body mass index; TR, thyroid hormone receptor.

Siete stati attenti???